If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+8y-6=0
a = -2; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·(-2)·(-6)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*-2}=\frac{-12}{-4} =+3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*-2}=\frac{-4}{-4} =1 $
| -23=17+5x | | 8x5–22x4–55x3+55x2+22x–8=0. | | 4x²-2x+16=0 | | c=5/9(-171) | | 3x²+7=0 | | 5/3=0.16/x-1 | | X³+6x-5=0 | | 9x-5x-30=0 | | 9(x-4)=4(x-3) | | 1.5x-2.5x=7 | | e-4/3-e/2=1 | | 2(4x-9)=15 | | 15=3b+14 | | (3x+5)/2=12 | | (3x-5)/2=12 | | 11-3(q-4)=8q+3 | | 7(8x-14)=12 | | 5x-15°+90°-2x=180° | | 2a-12=11 | | r(r-5)(r+18)=0 | | 9q+2=2q+23 | | 9t-21=6t | | 784=7x= | | 2x(3x+5)=52 | | 17a+9a-12a+15a-8a=21a | | 5/8x2/3=0.4166 | | F(x)=3(9)+15 | | 2(3x+3)=52 | | 2(3x+10)=52 | | A={x/4x-1529,x£N} | | x4−10x3+21x2+40x−100=0 | | 2/3=n9 |